6.2 Representations of Functions

EXAMPLE 1 – Writing Function Rules

- A. Write a function rule for "The output is five less than the input."
- B. Write a function rule for "The output is half of the input."
- **C.** Write a function rule for "The output is eight more than the input."
- D. Write a function rule for "The output is 5 less than 2 times the input."

EXAMPLE 2 – Evaluating Functions

Find the value of y when x = 5.

A.
$$y = 4x - 1$$

B.
$$y = 10x$$

c.
$$y = 7 - 3x$$

Functions as Tables and Graphs

A function can be represented by an input-output table and by a graph. The table and graph below represent the function y=x+2.

Input,	Output,	Ordered Pair, (x, y)
1	3	(1, 3)
2	4	(2, 4)
3	5	(3, 5)

By drawing a line through the points, you graph all of the solutions of the function y = x + 2.

EXAMPLE 3 – Graphing a Function

Graph the function y = -x - 3 using inputs of -1,0,1 and 2.

x	у

SUMMARY – Representations of Functions

Words:

An output is 2 more than the input.

Equation:

Table

Mapping

Graph