

Shadow Method-Indirect Measurement Practice

1. Use similar triangles to find the height of the building.

2. Use similar triangles to find the height of the tree.

3. A lamppost casts a shadow that is 15 yards long. A 3-foot-tall mailbox casts a shadow that is 5 yards long. How tall is the lamppost? 4. An 8-foot-tall statue stands in the park and casts a shadow that is 16 feet long. A dog stands next to it and is 3 feet tall. How long is the dog's shadow?

5. A building casts a shadow that is 420 meters long. At the same time, a person who is 2 meters tall casts a shadow that is 24 meters long. How tall is the building? 6. On a sunny day around noon, a tree casts a shadow that is 12 feet long. At the same time, a person who is 6 feet tall standing beside the tree casts a shadow that is 2 feet long. How tall is the tree?

7. A pole casts a shadow that is 21 feet long. A 3-feet-tall child standing next to the pole casts a shadow that is 9 feet long. How tall is the pole?

8. Jeremy has two trophies next to each other sitting in the window of his room. His football trophy is 7 inches tall and his basketball trophy is 13 inches tall. As the light shines in, the basketball trophy's shadow measures 26 inches. How long is the football trophy's shadow?

OPEN ENDED Describe a situation that requires indirect measurement. Explain how to solve the problem.