\qquad Date \qquad Hour \qquad

Inequalifites

* An inequality is like an \qquad except instead of one solution,
\qquad are possible.
* We use \qquad symbols when dealing with inequalities

○ \qquad means less than

○ \qquad means greater than

○ \qquad means less than or equal to
\circ \qquad means greater than or equal to

○ \qquad means not equal

* Be cautious of negative numbers. A larger negative number is actually \qquad than a smaller negative number. When in doubt, think in terms of \qquad .
* It is often helpful to graph solutions to inequalities on a \qquad .
* > and < symbols use an \qquad point on the number line.
* $\quad \geq$ and \leq use a \qquad point on the number line.

Adding/Subtracting Inequalities

$$
\mathrm{w}-7 \leq-10 \quad-7.5 \geq d-10 \quad x+\frac{3}{4}>1 \frac{1}{2}
$$

Multiplying/Dividing Inequalities

Use the number line to help you answer the questions in the table below:

| First
 Inequality | True or False? | Action | New Inequality | True or False? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1<4$ | | Add 3 to
 both sides | | |
| $-4<6$ | | | | |
| $-1<5$ | If true proceed | | | |

Use your work from the table above to answer the following questions:

1) Which specific actions caused the first inequality to become a false inequality?
2) Without changing the action, what could be done to the new inequality to make it true?

Solve and Graph

$$
\frac{x}{-3}>-4 \quad 0.5 \leq-\frac{y}{2} \quad-12 \geq \frac{6}{5} m \quad-\frac{2}{5} h \leq-8
$$

$-5 z<35$
$-2 a>-9$
$-1.5<3 n$
$-4.2 \geq-0.7 w$

