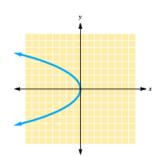
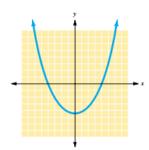

"What is a Function?" Review

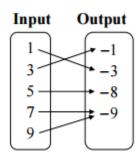

What defines a function?_____


Determine whether the following are a function. Circle the items that are functions.

x	у
-3	0
-1	1
1	2
3	3

$$\begin{array}{c|cc}
x & y \\
-2 & -2 \\
-1 & -2 \\
1 & 3 \\
2 & 3
\end{array}$$

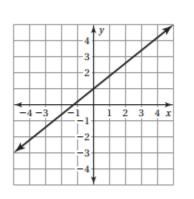
What is an easy way to remember if it's a function from a graph?_____

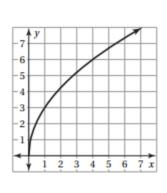

$$\{(1, 3), (1, 2), (1, 1)\}$$

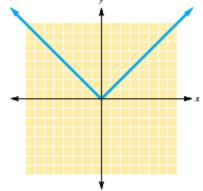
$$\{(2, -1), (3, 4), (3, -1)\}$$

$$\{(2, -1), (3, 4), (3, -1)\}\$$
 $\{(1, 2), (1, 3), (2, 1), (3, 1)\}$

What is an easy way to remember if it's a function from a set of points?_____


Input	(Outpu
$\left(\begin{array}{c} 0 \end{array}\right)$		→ 4
1		→ 6
2		→ 8
3		→1 0
4		→12




Explain two ways you can identify if a function is linear.

- 1.)
- 2.)

Circle the following graphs that represent a linear function and state why.

State if the following functions are linear or nonlinear. Explain.

Input, x	1	2	3	4
Output, y	0	3	8	15

Input, x	1	2	3	4
Output, y	-1	-3	-5	-7

The table shows the cost *y* (in dollars) for *x* theater tickets. Find the missing *y*-value that makes the table represent a linear function.

Tickets, x	2	4	6
Cost, y	26	?	78

Create a table that represents a linear expression. Explain what makes it a linear function.